Antitumour polycyclic acridines. Part 1. Synthesis of 7H-pyridoand 8 H -quino-[4,3,2-kl]acridines by G raebe-U IImann thermolysis of 9 -($1,2,3$-triazol-1-yl)acridines: application of differential scanning calorimetry to predict optimum cyclisation conditions

D amien J. H agan, ${ }^{\text {a }}$ E lena G iménez-A rnau, ${ }^{\text {a }}$ C arl H. Schwalbe ${ }^{\text {b }}$ and M alcolm F. G. Stevens*,a
${ }^{\text {a }}$ C ancer Research L aboratories, D epartment of P harmaceutical Sciences, U niversity of Nottingham, N ottingham, UK NG7 2RD
${ }^{\text {b }}$ P harmaceutical Sciences Institute, A ston U niversity, B irmingham, UK B4 7E T

Abstract

The thermal decomposition of a series of acridines substituted in the 9-position with 1,2,3-triazol-1-yl, benzotriazol-1-yl and naphthotriazol-1-yl groups has been studied by differential scanning calorimetry. Whereas the monocyclic triazole 7a shows a discrete melting endotherm followed by a decomposition exotherm corresponding to formation of the 7 H -pyrido[4,3,2-kl]acridine 8 , in the benzotriazoles 10a-e and naphthotriazole 10 f these processes coincide with a single sharp exothermic transition attributed to cyclisation to polycyclic acridines 11a-f, respectively. The optimum conditions for the preparative scale synthesis of polycyclic acridines from triazole precursors utilised boiling diphenyl ether as the decomposition medium. A benzotriazol-1-ylacridine 10e substituted in the peri position with a methyl group behaved anomalously: as well as affording the expected 8H -quino[4,3,2-kl]acridine 11e, cyclisation also led to radical mediated loss of the methyl group to form the unsubstituted 8 H -quino[4,3,2-kI]acridine 11a and H -abstraction from the methyl group leading to the benzoazepinoacridine 12. R adical cyclisation of 9-(2-iodoanilino)acridine 16 also gave 8 H -quino[4,3,2-kI]acridine 11a. The crystal structure of 11a confirms the 8 H tautomer arrangement with intermolecular $\mathrm{N} 8-\mathrm{H} \cdots \mathrm{N} 13$ hydrogen bonding and exhibits a polycyclic system that is planar with rms deviation $0.044 \AA$.

Introduction

The acridine ring system is an ideal framework for the medicinal chemist to embellish with a diversity of functional groups. ${ }^{1}$ Derivatives and salts of acridines are characteristically highly crystalline, stable, attractively coloured, often strongly fluorescent and, rewardingly, display a range of antimicrobial properties which have given them a secure position in the history of chemotherapy. ${ }^{2}$ Since our first venture into acridine chemistry in 1972^{3} derivatives of this ring system have attracted attention in the development of cancer chemotherapeutic agents. ${ }^{4}$ For example, m-AM SA $1,{ }^{5}$ and other D NA binding agents, are now known to betargeted to topoisomerase II ${ }^{6,7}$ a D N A processing protein overexpressed in many proliferating tumour cell types, for example in breast cancer. ${ }^{8}$

Topoisomerase II exists in two distinct isoforms in human cells; the $\alpha-(170 \mathrm{kD} \mathrm{a} \text {) and } \beta \text {-isoforms (} 180 \mathrm{kD} \mathrm{a})^{9}$ which differ in their patterns of expression and sensitivity to anticancer drugs. ${ }^{10} \mathrm{~N}$ ew agents which might selectively discriminate between these isoforms could have a different clinical profile compared with standard drugs of the general topoisomerase IIinhibitory class such as amsacrine, doxorubicin and etoposide. ${ }^{11}$ Intriguingly, a series of DNA-intercalating pyridoacridines isolated from the purple marine C ystodytes sp . ascidian such as the tetracycle cystodytin A $\mathbf{2 a}$ and cystodytin J $\mathbf{2 b}$, the pentacyclic pyridoacridines kuanoniamine D 3 and shermilamine B 4 and the heptacycle eilatin 5 have been shown to inhibit topoisomerase II. ${ }^{12}$ The aforementioned structures (F ig. 1) are representative of a large number of pyridoacridine based natural products. ${ }^{13}$

It has been shown previously that a pentacyclic acridine 11a could be synthesised by a thermal G raebe-U IImann reaction on the 9-(benzotriazol-1-yl)acridine 10a. ${ }^{14}$ Subsequently, M itchell and Rees, as part of a comprehensive study of the photolysis of 1 -aryl-1,2,3-triazoles, ${ }^{15,16}$ obtained the same pentacycle from
the photolysis of 10a in acetonitrile ${ }^{15}$ In both cases recovered yields were $<40 \%$. In this paper we report the synthesis of a range of 9 -(substituted-1,2,3-triazol-1-yl)acridines which have been subjected to differential scanning calorimetry (DSC) to measure the thermal parameters underlying their decomposition and cyclisation: using this information we have optimised conditions for their transformation to polycyclic acridines.

2
$\mathrm{R}=\mathrm{COCH}=\mathrm{CMe}_{2}$ b $\mathrm{R}=\mathrm{Ac}$

4

1

3

5
Fig. 1 Structures of representative topoisomerase II inhibitors amsacrine 1 and marine pyridoacridine alkaloids 2-5

Results and discussion

Synthesis of 9-(1,2,3-triazol-1-yl)acridines
A cridin-9-one 6^{2} was the starting point for the synthesis of the required triazolylacridines. 9-(1,2,3-Triazol-1-yl)acridine 7a

6

7
a $\quad \mathrm{R}=1,2,3$-triazol-l-yl
b $\mathrm{R}=1,2,3$-triazol- - -yl
c $\mathrm{R}=\mathrm{Cl}$
d $\quad \mathrm{R}=\mathrm{N}_{3}$
e $\mathrm{R}=\mathrm{NH}_{2}$
(49\%) together with the isomeric 9-(1,2,3-triazolyl-2-yl)acridine 7b (26%) were prepared by interaction of 9 -chloroacridine $\mathbf{7 c}$, obtained from 6 and phosphorus oxychloride, ${ }^{3}$ with the anion of 1,2,3-triazole generated using sodium hydride in dry DM F Interaction of 9-chloroacridine or 1-methyl-9-chloroacridine with a range of anilines afforded the anilinoacridines $9 \mathrm{a}-\mathrm{e}$, iso lated as their hydrochloride salts. In the case of the reaction with 2-amino-4-methylaniline the major product isolated was the anilinoacridine 9 d but NMR analysis of the reaction mixture indicated the presence of a minor product, presumably the isomer (9: $\left.R^{1}=R^{3}=H, R^{2}=M e\right)$ in a 5:1 ratio. The naphthylaminoacridine 9 f was similarly formed from 2,3-diaminonaphthalene. N itrosation of the series $9 \mathrm{a}-\mathrm{f}$ in hydrochloric acid furnished the insoluble benzotriazoles 10a-e and naphthotriazole 10 f in high yields (Scheme 1). Compound 10a has been prepared previously from the cycloaddition reaction between 9 -azidoacridine 7d and benzyne ${ }^{15,17} \mathrm{~A}$ ttempts to synthesise the amine $\mathbf{1 0 g}$ by reduction of 9 -(6-nitrobenzotriazol-1-yl)acridine 10c under a range of conditions were not successful because of reductive fission of the acridine-benzotriazole bond

The triazolylacridines were readily hydrolysed to acridin-9one 6 in hot aqueous mineral acids and effervesced at their melting-points indicative of triazole ring fragmentation (G raebe-U IImann reaction).

D ifferential scanning calorimetry (DSC)

Temperature changes in solid materials can induce a number of chemical (e.g. degradation) and physical (e.g. melting, recrystallisation) effects. Characterisation of these changes may be achieved by thermal analysis. ${ }^{18}$ In practice, DSC involves placing a small amount of a sample in a DSC pan and increasing/decreasing the temperature at a predetermined rate The flow of heat into this pan is adjusted to ensure that the temperature of the sample pan is identical to that of the reference pan which has no sample present. Thus, in the examination of melting properties (an endothermic process), as the sample melts more energy in the form of heat must be provided to the sample pan to maintain the temperature at an equivalent value to the reference pan. The thermogram of 9-(1,2,3-triazol1 -yl)acridine 7a [Fig. 2(a)] shows a melting endotherm at $212.1^{\circ} \mathrm{C}$ with enthalpy of fusion of $813.3 \mathrm{~J} \mathrm{~g}^{-1}$, a range representing a molten phase (approx. $215-247^{\circ} \mathrm{C}$) and a sharp exothermic transition at $249.8^{\circ} \mathrm{C}\left(-2414 \mathrm{~J} \mathrm{~g}^{-1}\right)$ corresponding to thermolytic cyclisation to the pyridoacridine 8 . The sharpness of the transition indicates that the latter process is relatively free of competing reactions. In contrast, the thermogram of the isomeric 9-(1,2,3-triazol-2-yl)acridine 7 b reveals no melting (or decomposition) at $<300^{\circ} \mathrm{C}$ (data not shown).

In the thermogram of 9-(benzotriazol-1-yl)acridine 10a [Fig. 2(b)] it is apparent that only one enthalpy change occurs on heating the sample. Melting and thermolytic cyclisation

Scheme 1 Reagents and conditions: i, Sodium nitrite in 2 m HCl , $0^{\circ} \mathrm{C}$, then aq. NH_{3}; ii, boiling PhOPh, 2 h . Numbering shown for compound 11 applies to 11a-e and 11 g only.
coincide to give an overall exotherm centred at $245.6^{\circ} \mathrm{C}$ $\left(-714.9 \mathrm{~J} \mathrm{~g}^{-1}\right)$. As in the monocyclic triazole example, the sharpness and singularity of the exothermic transition confirms that formation of the pentacyclic acridine 11a occurs over a very narrow temperature range and does not involve a complex sequence of reactions with the potential to generate significant impurities. A sample of pure pentacyclic acridine 11a, prepared independently (see later), melted at $286.8^{\circ} \mathrm{C}$ [Fig. 2(b), inset]. When the sample of 10a was mixed with diphenyl ether (1 mol equiv.) the shape of the exotherm was changed [Fig. 2(c)] and the temperature of maximum energy release, corresponding to cyclisation, was lowered to $230.1^{\circ} \mathrm{C}$. However, the overall energy release was comparable ($-692.8 \mathrm{~J} \mathrm{~g} \mathrm{~g}^{-1}$) to that liberated during cyclisation of the unadulterated sample of 10a, showing that the diphenyl ether was not perturbing the reaction pathway. The thermogram monitoring the decomposition of 9 -(benzotriazol-1-yl)-1-methylacridine 10e (data not shown) shows a much broader exothermic transition than that for 10a with peak irregularities. These features, together with the pronounced baseline drift, were predictive of the generation of a mixture of products in the preparative thermolysis of $\mathbf{1 0 e}$.

Fig. 2 Thermograms monitoring melting and decomposition of: (a) 9-(1,2,3-triazol-1-yl)acridine 7a; (b) 9-(benzotriazol-1-yl)acridine 10a with (inset) melting of 8 H -quino[4,3,2-kl]acridine 11a; (c) melting and decomposition of 9-(benzotriazol-1-yl)acridine 11a with diphenyl ether (1 mol equiv.)

Preparative thermolysis of 9-(1,2,3-triazol-1-yl)acridines

 U sing the DSC, the precise decomposition temperatures of the series of 9 -(benzotriazolyl)acridines 10a-f were determined (Table 1). Clearly the optimum conditions for cyclisation to pyridoacridines 11a-f should be solid state thermolysis at those individual temperatures. However, for reactions on a preparative scale which are exothermic and involve rapid nitrogen release, it was more convenient (and safer) to conduct the thermolyses in boiling diphenyl ether (bp $259^{\circ} \mathrm{C}$ for 1 h). A lso this approach allowed us to exploit the lowering of the cyclisation temperature because of the solvation effect of the solvent.Preparative scale thermolysis of 9-(1,2,3-triazol-1-yl)acridine 7a in boiling diphenyl ether gave the red tetracycle 8 in 75% isolated yield after chromatographic purification (Scheme 1), The isomeric (triazol-2-yl)acridine $\mathbf{7 b}$ was recovered unchanged from boiling diphenyl ether as predicted from the DSC analysis. The unsubstituted benzotriazole 10a afforded the 8 H -quino-[4,3,2-kl]acridine 11a in boiling diphenyl ether in an isolated yield (84%) superior to that recorded in earlier solid state ${ }^{14}$ or photolytic G raebe-U IImann cyclisations. ${ }^{15}$ Interestingly, reasonable yields of γ-carbolines have been reported for GraebeU Ilmann reactions on 4-(benzotriazol-1-yl)pyridines conducted in pyrophosphoric acid under microwave irradiation. ${ }^{19}$ A nalogues 10b-f cyclised thermally to the corresponding substituted quinoacridines 11b-f in moderate yields ranging from $50-$ 65% after chromatographic purification. In the case of the 1 methylacridine 10e the major product 11 (60%) was accompanied by the demethylated pentacycle 11a (12\%) and a trace $(<1 \%)$ of a product isomeric with 11e. This compound is assigned, tentatively, the benzoazepinoacridine structure 12 since its El mass spectrum showed a base peak at $\mathrm{M}^{+}-14$ $\left(\mathrm{CH}_{2}\right)$ mass units contrasting with $\mathrm{M}^{+}-15(\mathrm{Me})$ for the isomer 11e. Lack of sufficient material thwarted full characterisation of this product. Catalytic hydrogenation of the 2 -nitroquinoacridine 11c gave the corresponding amine $\mathbf{1 1 g}$ (58%).
The mechanism of the photolytic counterpart of the transformation 10a to 11a has been interpreted by Mitchell and Rees ${ }^{15}$ as involving an initial triplet diradical $\mathbf{1 3}$ which gives rise to a singlet carbene which, in its 'dipolar form' 14, attacks the acridine 1- (or 8-) position in an electrophilic process (Scheme 2). In the present thermal variant of this cyclisation it is proposed that rotation of the phenyl-amine bond positions the aryl radical to initiate homolytic substitution at the acridine 1 (or 8-) position. The pentacyclic diradical 15 would then

Table 1 Thermal analysis of 9-(benzotriazol-1-yl)acridines 10 using differential scanning calorimetry

Compound	Decomposition temperature $\left(T /{ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$	Energy release $\left(\mathrm{E} / \mathrm{J} \mathrm{g}^{-1}\right)$
10a	245.6	-714.9
10a ${ }^{\text {b }}$	230.1	-692.8
10b	242.3	-593.3
10c	261.9	-636.8
10d	242.1	-596.6
10e	220.2	-312.9
10f	255.2	-1808.2

${ }^{\mathrm{a}} \mathrm{M}$ inimum point on the exotherm $\left(\mathrm{T}_{\text {min }}\right) .{ }^{\mathrm{b}} \mathrm{M}$ ixed with diphenyl ether (1 mol equiv.)

(or tautomer)

12

aromatise to the 13 H -tautomer of the observed 8 H -quino-[4,3,2-kl]acridine 11a. (For a discussion on the tautomeric structures of 11a, see later.)

Two pieces of evidence support this mechanism. The minor loss of a methyl group in the thermolysis of acridine 10e, yielding the unsubstituted quinoacridine 11a, can be accounted for by homolysis of the $\mathrm{C}-\mathrm{M}$ ebond ($\mathbf{1 5}$; M efor H); also, the benzoazepine structure 12 probably formed in the same decomposition could arise by H -abstraction from the methyl group. M ore convincingly, 2-iodoanilinoacridine 16 formed from 9chloroacridine and 2-iodoaniline, undergoes radical coupling to yield 11a (32%, unoptimised) via the aryl radical 17 generated with tributyltin hydride-AIBN. In contrast, the iodoaniline was stable in boiling diphenyl ether (3 h) without radical initiation.

Properties and structure of 8 H -quino[4,3,2-kl]acridine

M itchell and Rees assigned the 8 H -tautomeric structure to the quinoacridine 11a on the basis of N OE difference and 2D spectra but no details were given. ${ }^{15}$ We have confirmed this assign-

ment for 11a in both solution and the solid state. Thus 2D COSY studies were used to analyse the three- and four-spin systems in the polycyclic nucleus and NOE enhancements (Fig. 3) to identify the terminal protons. Irradiation of the absorptions for H-7 and H-9 (see Scheme 1 for numbering system) elicited an 8% enhancement of the NH signal at $\delta 10.8$; irradiation of the NH absorption gave a 10% and 9% enhancement of the protons at positions 7 and 9 , respectively. The NOE enhancements were reduced by exchange of the amine proton with water in the DM SO. The most significant NOE enhancement (24%) was obtained when the signals for protons 4 and 5 were irradiated; this is indicative of their close proximity in the pentacycle. NMR and MS analyses were used to confirm the structures of other polycyclic acridines described in this paper since microanalytical data were unreliable due to the propensity of acridines to undergo solvation. ${ }^{2}$

The pyridoacridine 8 ($\mathrm{pK}_{\mathrm{a}} 6.08$, measured by the UV-visible spectroscopic method) and the unsubstituted pentacycle 11a ($\mathrm{pK}_{\mathrm{a}} 6.30$) and hexacycle $11 \mathrm{f}\left(\mathrm{pK}_{\mathrm{a}} 6.17\right.$) are bases of comparable strength but slightly weaker bases than the reference 9 anilinoacridine m-A M SA 1 (pK a 7.19). ${ }^{20} 9$-A minoacridine 7 e is approximately 10000 -fold a stronger base $\left(\mathrm{pK}_{\mathrm{a}} 9.99\right)^{2}$ than the new heterocycles. In the quinoacridine series 11 the presence of a 2 -nitro group in 11c has a dramatic base-weakening effect ($\mathrm{pK} \mathrm{K}_{\mathrm{a}} 4.22$) whereas the effect of a 2 -amino group in 11 g is only marginal ($\mathrm{pK}_{\mathrm{a}} 6.18$). A s expected, the presence of an electron-

Fig. 3 Selected NOE enhancements in 8 H -quino[4,3,2-kl]acridine 11a
withdrawing chloro group 11 b in the 3-position is significantly base-weakening (pK a 5.32) and a 3-methyl group 11d basestrengthening ($\mathrm{pK} \mathrm{a}_{\mathrm{a}} 6.85$).

The monocation 18 formed from 11a readily dissociates in water to afford the highly fluorescent free base. U nlike 9-chloroand 9 -azido-acridine ${ }^{4}$ and the anilinoacridines and triazolylacridines described herein which readily hydrolyse to acridin-9one 6, especially in acids, compound 11a is stable in 5 м hydrochloric acid or sodium hydroxide. The potential product of such hydrolysis might have been anticipated to be the 1-arylacridinone 19 (Scheme 3). A lso compound 11a failed to afford

Scheme 3
an ethiodide salt when boiled in excess ethyl iodide (24 h). Clearly these properties are incompatible with a 13 H -tautomeric ('tethered' 9 -anilinoacridine) structure for 11a.

The electronic absorption spectrum of m-A M SA 1 in ethanol is relatively simple and shows three bands at 240, 340 and 433 nm ; the long wavelength band is shifted to 461 nm on protonation. In contrast the spectra of the pyridoacridine 8 and the quinoacridines 11a-g display considerable fine structure (Table 2) and the long wavelength absorptions of the free bases in the range 443-475 nm undergo significant bathochromic shifts (to $488-500 \mathrm{~nm}$) on protonation.
In order to confirm the structure of 11a and facilitate subsequent interpretation of physicochemical and molecular modelling studies on the intercalative interactions of polycyclic acridines and DNA, an X-ray structure determination was completed. The molecular structure of 11a is shown in Fig. 4. Several pieces of crystallographic evidence unanimously indicate that the 8 H -tautomer is present in the crystalline state. A hydrogen atom site $0.96(4) \AA$ from N 8 was located in a difference electron density map and successfully refined. While both ring bonds to N 8 are relatively long, $\mathrm{C} 7 \mathrm{a}-\mathrm{N} 8$ and $\mathrm{N} 8-\mathrm{C} 8 \mathrm{a}$ being $1.370(5) \AA$ and $1.389(4) \AA$ respectively, the much shorter N 13-C 13a [1.324(4) A] shows double bond character which militates against protonation there. The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles of $122.6(3)^{\circ}$ at N (8) and 117.5(3) at N 13 show the expected compression by a lone pair at N 13 . A hydrogen bond links N 8 as donor to N 13 of a molecule in equivalent position $\mathrm{x}, 0.5-\mathrm{y}$, $-0.5+\mathrm{z}$ with $\mathrm{H} \cdots \mathrm{N}$ contact distance $2.08(4) \AA, \mathrm{N} \cdots \mathrm{N}$ $3.036(4) \AA$, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle $175(4)^{\circ}$. Since, notwithstanding the above evidence, this hydrogen bond could provide a low-energy pathway for proton transfer from N 8 to N 13 in some molecules, heats of formation were calculated for both tautomers after optimisation of geometry starting from the crystal structure Semi-empirical molecular orbital calculations

Table 2 Electronic absorption spectra of 7H-pyrido- and 8H -quino-[4,3,2-kI]acridines

Compound	A bsorbance maxima (λ / nm)	
	N eutral species ${ }^{\text {a }}$	Protonated species ${ }^{\text {b }}$
1 (m-A M SA)	240, 340, 433	240, 342, 461
8	231, 250, 267,* 307,* 319, 409,* 429, 453	238, 278, 301,* 315, 356, 375, 438,* 463, 490
11a	236, 260,* 288, 300, 334, 373, 426, 443	236, 274, 288, 318, 361, 431,* 460, 488
11b	238, 264, 286,* 289, 339, 381, 429, 446	238, 256, 277, 289, 367, 434,* 460, 489
11c	235, 271, 292,* 329,* 342, 423, 449	233, 263, 292,* 325,* 409, 433,* 459, 490
11d	239, 260,* 286, 289, 300,* 336, 375, 425, 444	239, 277, 289, 319, 363, 435,* 461, 490
11 f	262, 295, 326, 352, 370,* 382, 399, 421,* 447, 475	267, 294,* 308, 352, 371, 440,* 468, 500
11g	235, 275, 326, 434,* 453	235, 247, 255, 275, 290, 363, 434,* 460, 490

${ }^{\mathrm{a}} \mathrm{M}$ easured in ethanol. ${ }^{\mathrm{b}} \mathrm{M}$ easured in ethanol containing 4 m hydrochloric acid. * Shoulder.

Fig. 4 ORTEP ${ }^{22}$ drawing of 8 H -quino[4,3,2-kI]acridine 11a and the crystallographic numbering scheme
with AM 1 parameters in GAMESS ${ }^{\mathbf{2 1}}$ yielded ΔH_{f} values 6.6 $\mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}$ lower for the 8 H - than for the 13 H -tautomer.

The heterocyclic framework of 11a is planar within $0.09 \AA$ with rms deviation $0.044 \AA$. The acridine ring is slightly creased along a line approximately from C7 to C12. Thus the fragment C9 C10 C11 C12 C12a C 8a N 8 C7a C7 has rms deviation of only $0.013 \AA$ and makes a dihedral angle of $3.0(2)^{\circ}$ to another planar fragment comprising C 5a C5 C6 C7C7a C14 C13a C12a C12 with rms deviation $0.011 \AA$. In turn the phenyl ring C1 C2 C3 C4 C4a C 1a, also with rms deviation $0.011 \AA$, is twisted from the latter plane by $3.1(2)^{\circ}$

We will report on the intriguing biological properties of these polycyclic systems, and related structures, in future papers in this series.

Experimental

M elting points were obtained on a G allenkamp melting point apparatus and are uncorrected. IR Spectra were measured in K Br on a M attson 2020 G alaxy Series F T-IR spectrometer. U V Spectra were measured in 95\% ethanol on a Cecil 1020S scanning spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R Spectra were recorded on a Bruker ARX 250 spectrometer operating at 250.13 and 62.9 M Hz , respectively. ${ }^{13} \mathrm{C}$ A ssignments ($\mathrm{C}=$ quaternary carbon) were based on DEPT 135 and D EPT 90 experiments. M ass spectra were recorded on an A EI M S-902, a VG M icromass 7070E or a VG Platform spectrometer. Silica gel C60H (40-60 mm) was used for flash chromatography. TFA = trifluoroacetic acid.

Differential scanning calorimetry

Differential scanning calorimetry was performed with a PerkinElmer D SC-4 instrument using the Thermal A nalysis D ata Station (TAD S) for data collection, handling and presentation. Samples for thermal analysis were weighed (1-4 mg) into an
aluminium pan and covered with an aluminium lid which was then crimped into position. The pan was placed in the D SC oven together with a blank, prepared in exactly the same way but without the sample. The sample and blank were purged continuously with nitrogen gas at a flow-rate of $25 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ ($1.4 \mathrm{~kg} \mathrm{~cm}^{-2}$) and the thermograms were recorded over a temperature range of $40-290^{\circ} \mathrm{C}$ with a programmed heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Temperature calibration was made with an indium standard (onset temperature $156.6^{\circ} \mathrm{C}$) and temperatures are quoted as those of peak maximum ($\mathrm{T}_{\text {max }}$) or minimum ($\mathrm{T}_{\text {min }}$).

9-(1,2,3-T riazol-1-yl)acridine 7a

To a mixture of 95% sodium hydride ($0.14 \mathrm{~g}, 5.5 \mathrm{mmol}$) in dry D M F ($15 \mathrm{~cm}^{3}$) was added 1 H -1,2,3-triazole ($0.38 \mathrm{~g}, 5.5 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The mixture was stirred (30 min) and a solution of 9chloroacridine ${ }^{2}(1.07 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry DMF $\left(5 \mathrm{~cm}^{3}\right)$ was added slowly (15 min). A fter being stirred at $60^{\circ} \mathrm{C}(2 \mathrm{~h})$ the mixture was poured into ice-water ($100 \mathrm{~cm}^{3}$) and products were collected. Flash chromatographic separation (hexane-ethyl acetate, 1:1) gave a slow moving fraction comprising the triazole 7a which crystallised from ethyl acetate as greenish needles ($0.6 \mathrm{~g}, 49 \%$), mp $212{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3096,1560$, 1449, 1233, 1071, 1007, 756, 637; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 209.5,248.0$, 361.0; $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 8.96 (d, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 8.33(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}-4,4^{\prime}, 5\right), 8.00$ (m, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.74 (m, $2 \mathrm{H}, \mathrm{H}-2,7$), 7.36 (d, 2 $\mathrm{H}, \mathrm{H}-1,8) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 149.5 (C), 138.4 (C), 134.9 (CH), 132.1 (CH), $130.3(\mathrm{CH}), 130.2(\mathrm{CH}), 129.4(\mathrm{CH}), 123.2(\mathrm{CH})$, 122.6 (C) (Found: C, 72.9; H, 4.05; N, 22.8; M H ${ }^{+}$[CI], 247. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 73.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 22.8 \% ; \mathrm{M} \mathrm{H}, 247\right)$.
The fast moving fraction gave 9-(1,2,3-triazol-2-yl)acridine 7b ($0.32 \mathrm{~g}, 26 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1553,1520$, 1481, 1406, 922, 818, 750, 637; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO $) 8.50(\mathrm{~s}, 2 \mathrm{H}$, H-4', 5'), 8.33 (dd, 2 H , H-4,5), 7.99 (m, 2 H, H-3,6), 7.72 (m, 2 $\mathrm{H}, \mathrm{H}-2,7), 7.52$ (d, $2 \mathrm{H}, \mathrm{H}-1,8) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO) 149.7 (C), 138.1 (CH), 132.0 (CH), 130.2 (CH), $129.2(\mathrm{CH}), 123.6$ (CH), 122.3 (C) (Found: C, 73.1; H, 4.0; N, 22.5; $\mathrm{M} \mathrm{H}^{+}$[CI], 247. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 73.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 22.8 \% ; \mathrm{MH}, 247\right)$.

9-(2-A minoanilino)acridine hydrochloride 9a

1,2-D iaminobenzene (1.08 g) in boiling dry methanol ($50 \mathrm{~cm}^{3}$) was treated with 9 -chloroacridine $(2.14 \mathrm{~g})$ over 30 min . The mixture was refluxed for a further 1 h , cooled and diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was added. The anilinoacridine hydrochloride (2.06 g , $64 \%)$ was collected and had mp 319-320 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} 320-322^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2799,1632,1549,1501,1474,1261,1157,751 ;$ $\lambda_{\text {max }}(\mathrm{EtOH}) / n m 212.3,248.3,395.3 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) $14.74(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}$), 11.26 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.26 (d, $2 \mathrm{H}, \mathrm{H}-1,8$), 8.16 (d, $2 \mathrm{H}, \mathrm{H}-4,5$), 8.01 (m, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.44 (m, $2 \mathrm{H}, \mathrm{H}-2,7$), 7.29 (t, 1 H, H-4'), 7.17 (d, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.74$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.75 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$).

The following acridines were prepared similarly.

9-(2-A mino-4-chloroanilino)acridine hydrochloride 9b. From 9-chloroacridine and 3,4-diaminochlorobenzene (88\%), mp $298-300^{\circ} \mathrm{C}$ (from methanol); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2895,1637,1583$, 1551, 1519, 1265, 1160, 746; $\lambda_{\max }($ EtOH)/nm 212.7, 249, 394.5;
$\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 14.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 11.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 8.29 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-1,8$), 8.11 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-4,5$), 7.97 (m, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.44 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,7$), 7.14 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 6.96 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 6.64 (t, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.98 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$).

9-(2-A mino-5-nitroanilino)acridine hydrochloride 9c. F rom 2-amino-4-nitroaniline (57\%), mp 303-306 ${ }^{\circ} \mathrm{C}$ (from acetonitrile); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3411,3300,3186,1637,1585,1517,1475,1309 ;$ $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 220,251.5,409 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 14.81$ (br s, 1 H, NH), 11.12 (br s, 1 H, NH), 8.28 (d, 2 H, H-1,8), 8.14 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}, 6^{\prime}$), 8.09 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-4,5$), 7.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3,6$), 7.46 (t, $2 \mathrm{H}, \mathrm{H}-2,7$), 7.18 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.98 (d, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$).

9-(2-A mino-4-methylanilino)acridine hydrochloride 9d. From 2-amino-4-methylaniline (91%), mp $273-275^{\circ} \mathrm{C}$ (from aceto-nitrile-methanol); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2706, 1637, 1583, 1553, 1520, 1475, 1158, 748; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215.4,247.2,400$; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}$ SO) $14.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 11.24$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.30 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-1,8$), 8.06 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-4,5$), 7.94 (m, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.38 (t, $2 \mathrm{H}, \mathrm{H}-2,7$), 6.94 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 6.73 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 6.46 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

9-(2-A minoanilino)-1-methylacridine hydrochloride 9e. From 9-chloro-1-methylacridine ${ }^{23}$ and 1,2-diaminobenzene (78\%), $\mathrm{mp} 255-257^{\circ} \mathrm{C}$ (from methanol); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1632,1579$, 1551, 1474, 1421, 1384, 758; $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 216.3,247.2,390 ;$ $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}$ SO) $13.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 10.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 7.84 (m, 5 H, H-3,4,5,6,8), 7.17 (m, 3 H, H-2,4', 7), 6.95 (d, 1 H, H-6'), 6.76 (d, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 6.58 (t, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.61 (br s, 2 H , NH_{2}), $2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

9-(3-A mino-2-naphthylamino)acridine hydrochloride 9f. F rom 9-chloroacridine and 2,3-diaminonaphthalene (68\%), mp 267$269^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3418,1636,1584,1553,1507,1476$, 1383, 745; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 221.5,276,402 ; \delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right)$ 14.88 (br s, $1 \mathrm{H}, \mathrm{NH}$), 11.40 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.29 (d, 2 H , H-1,8), 8.14 (d, 2 H, H-4,5), 7.95 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3,6$), 7.75 ($\mathrm{s}, 1 \mathrm{H}$, H-8'), 7.68 (d, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.61 (d, $1 \mathrm{H}, \mathrm{H}-7^{\prime}$), 7.37 (t, 3 H, H-2,6', 7), 7.25 (s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 7.16 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.92 (br s, 2 $\mathrm{H}, \mathrm{NH}_{2}$).
9-(Benzotriazol-1-yl)acridine 10a. 9-(2-A minoanilino)acridine hydrochloride 9a (1.61 g), suspended in 2 м hydrochloric acid $\left(50 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$ was treated (30 min) with a solution of sodium nitrite ($0.7 \mathrm{~g}, 2 \mathrm{~mol}$ equiv.) in water ($5 \mathrm{~cm}^{3}$). The suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h , basified with concentrated aqueous ammonia-ice and the product collected and crystallised from aqueous D M F. The benzotriazole was formed as cream crystals ($1.01 \mathrm{~g}, 69 \%$), mp $245.7^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{15}$ $250^{\circ} \mathrm{C}$, decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3048,1554,1491,1426,1058$, 752, 748; $\lambda_{\text {max }}\left(\right.$ EtOH)/nm 200, 249, 362; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H} \mathrm{H}\right] \mathrm{TFA}\right) 8.24$ (d, 2 $\mathrm{H}, \mathrm{H}-1,8), 8.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2,4^{\prime}, 7\right), 7.59$ (t, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.44 (m , 4 H, H-4,5,5', 7^{\prime}), 7.01 (d, 1 H, H-6'); $\delta_{\mathrm{c}}\left(\left[^{2} \mathrm{H}\right] \mathrm{TFA}\right) 141.0$ (C), 139.4 (CH), 136.0 (C), 132.3 (CH), 131.0 (CH), 129.1 (CH), 123.9 (CH), 123.1 (C), 119.9 (CH), 118.3 (CH), 110.2 (CH)

The following triazolyl-substituted acridines were prepared similarly.
9-(5-C hlorobenzotriazol-1-yl)acridine 10b. From 9 b as yellow needles (84%), $\mathrm{mp} 220^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3050\right.$, 1554, 1487, 1431, 1050, 825, 751; $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 203.5,248.5$, 361.5; δ_{H} ($\left.\left.{ }^{2} \mathrm{H}\right] \mathrm{T} F \mathrm{~A}\right) 8.25$ (d, $2 \mathrm{H}, \mathrm{H}-1,8$), 8.09 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2,4^{\prime}, 7$), 7.65 (t, 2 H, H-3,6), 7.42 (m, 3 H, H-4,5,7'), 6.95 (dd, 1 H, H-6'); $\left.\delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}\right] \mathrm{TFA}\right) 146.0$ (C), 141.0 (C) 139.3 (CH), 134.8 (C), 134.4 (C), 132.6 (CH), 130.9 (CH), 123.9 (CH), 123.0 (C), 119.9 (CH), 118.4 (CH), 110.8 (CH) (Found: C, 68.7; H, 3.2; N, 17.0; $\mathrm{MH}^{+}[\mathrm{Cl}], 331,333 . \mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{Cl}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 3.4 ; \mathrm{N}$, 17.0\%; M H , 331, 333).

9-(6-N itrobenzotriazol-1-yl)acridine 10c. From 9c as yellow needles (55\%), mp $261.8^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 2991, 1552, 1489, 1344, 1234, 1061, 752, 748; $\lambda_{\text {max }}($ EtOH)/nm 230, $362 ; \delta_{\mathbf{H}}\left(\left[^{2} \mathrm{H}\right] \mathrm{T} F \mathrm{~A}\right) 8.23$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-1,4^{\prime}, 5^{\prime}, 8$), $8.04(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-2,7)$, 7.91 (s, 1 H, H-7'), 7.58 (t, 2 H, H-3,6), 7.35 (d, 2 H, H-4,5); $\delta_{\mathrm{c}}\left({ }^{[}{ }^{2} \mathrm{H}\right]$ TFA) 149.0 (C), 141.1 (C), 139.5 (CH), 135.6 (C), 131.3 (CH), 123.7 (CH), 123.4 (CH), 121.9 (CH), 121.3 (CH), 120.1 (CH), 107.3 (CH) (Found: C, 64.8; H, 3.0; N, 19.95; $\mathrm{M} \mathrm{H}^{+}[\mathrm{Cl}]$,
341. $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.1 ; \mathrm{H}, 3.4 ; \mathrm{N}, 20.0 \%$; M H, 341).

9-(5-M ethylbenzotriazol-1-yl)acridine 10d. F rom 9d as cream flakes (56\%), mp $242.1^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3042$, 1555, 1498, 1432, 1232, 1065, 750; $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 203,248$, 361; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}\right] \mathrm{TFA}\right) 8.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-1,8), 8.05(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-2,7), 7.72$ (s, 1 H , H-4'), 7.60 (t, $2 \mathrm{H}, \mathrm{H}-3,6$), 7.38 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-4,5,7^{\prime}$), 6.95 (d, 1H, H-6'), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}\right]\right.$ TFA) 143.4 (C), 140.9 (C), 139.5 (CH), 135.5 (CH), 134.9 (C), 131.4 (CH), 129.9 (C), $123.0(\mathrm{CH}), 120.1(\mathrm{CH}), 115.6(\mathrm{CH}), 110.2(\mathrm{CH}), 20.1\left(\mathrm{CH}_{3}\right)$ (Found: C, 77.6; H, 4.5; N, 18.2; $\mathrm{MH}^{+}[\mathrm{Cl}], 311 . \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}$ requires, C, 77.4; H , 4.55; N, 18.05\%; M H , 311).
9-(Benzotriazol-1-yl)-1-methylacridine 10e. From 9e as yellow crystals (84%), $\mathrm{mp} 220^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 1579\right.$, 1474, 1421, 1258, 1093, 758; $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 200,253,362.5 ;$ $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H} \mathrm{H}\right] \mathrm{TFA}\right) 7.70(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(\left[^{2} \mathrm{H}\right] \mathrm{TFA}\right) 163.9$ (C), 144.2 (C), 142.9 (C), 139.5 (CH), 138.8 (CH), 135.3 (C), 133.1 (CH), 130.3 (CH), 128.9 (CH), 127.6 (CH), 121.9 (C), 120.2 (CH), 119.2 (C), 117.6 (C), $25.4\left(\mathrm{CH}_{3}\right)$.

9-(N aphtho $[2,3-\mathrm{d}]$ triazol-1-yl)acridine 10f. F rom 9 f as amber needles (59\%), mp $255.2^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3036$, 1553, 1460, 1424, 1275, 1044, 883, 750; $\lambda_{\text {max }}($ (EtOH $) / \mathrm{nm} 215$, 247, 320, 361; $\delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}\right] \mathrm{TFA}\right) 141.0$ (C), 139.3 (CH), 135.3 (C), 133.2 (C), 130.7 (CH), 129.3 (CH), 129.0 (CH), 127.6 (CH), 127.3 (CH), 124.2 (CH), 123.1 (C), 119.9 (CH), 117.2 (CH), 106.8 (CH) (Found: C, 79.2; H, 3.9; N, 16.0; M H+ [CI], 346. $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 79.7; H, 4.1; N, 16.2\%; M H , 346).

H ydrolysis of 9-(triazol-1-yl)acridines

Hydrolysis of 9-(1,2,3-triazol-1-yl)acridine 7a (0.1 g) in boiling 2 m hydrochloric acid (2 h) gave a precipitate of acridone 6 (0.06 $\mathrm{g})^{3}$ when the cooled mixture was adjusted to pH 5 . Similarly, hydrolysis of 9-(benzotriazol-1-yl)acridine 10a gave a mixture of acridone and benzotriazole (1:1).

7H -P yrido[4,3,2-kI]acridine 8

9-(1,2,3-Triazol-1-yl)acridine 7a (0.24 g) was mixed with diphenyl ether (10 g) and the mixture was heated at reflux temperature until TLC analysis showed that all the triazole had been consumed (generally 2 h). The mixture was added to the top of a silica gel column and the column eluted with hexane to remove diphenyl ether. The product was then eluted with EtOH -ethyl acetate ($1: 1$), solvent evaporated and the residue crystallised from aqueous DMF to give red-brown crystals ($0.16 \mathrm{~g}, 75 \%$), mp $281-282^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3449,3015$, 1638, 1547, 1466, 1433, 1343, $762 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO $) 10.73$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.32 (d, $1 \mathrm{H}, \mathrm{H}-11$), 8.12 (d, $1 \mathrm{H}, \mathrm{H}-2$), 7.43 (m, 2 H, H-5,9), 7.14 (m, 2 H, H-3,8), 7.04 (t, 1 H, H-10), 6.98 (d, $1 \mathrm{H}, \mathrm{H}-4), 6.78$ (d, $\left.1 \mathrm{H}, \mathrm{H}-6) ; \delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 152.0$ (C), 145.0 (CH), 141.0 (C), 140.8 (C), 138.5 (C), 132.7 (CH), 132.3 (CH), 125.1 (CH), $121.0(\mathrm{CH}), 119.9$ (C), $117.0(\mathrm{CH}), 116.5$ (CH), 113.2 (CH), 106.2 (CH) (Found: C, 82.3; H, 4.7; N, 12.65; $\mathrm{M}^{+}[\mathrm{EI}], 218 . \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2}$ requires $\mathrm{C}, 82.6 ; \mathrm{H}, 4.6 ; \mathrm{N}$, 12.8\%; M , 218).

Similarly prepared were the following compounds.
8H-Q uino[4,3,2-kl]acridine 11a (with C. K. Wong). From 10a, in 84% yield, $\mathrm{mp} 285-287^{\circ} \mathrm{C}$ (from aqueous DM F) (lit., ${ }^{15}$ $\left.>280^{\circ} \mathrm{C}\right)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1628,1597,1460,1384,1331,1154$, 745; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6} \mathrm{DD}\right.$ M SO) 10.78 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.56 (d, $1 \mathrm{H}, \mathrm{H}-12$), 8.39 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-4$), 7.91 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-5$), 7.83 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1$), 7.67 (t , $1 \mathrm{H}, \mathrm{H}-6$), 7.70 (t, $1 \mathrm{H}, \mathrm{H}-2$), 7.48 (t, $1 \mathrm{H}, \mathrm{H}-10$), 7.41 (t, 1 H , H-3), 7.22 (d, 1 H, H-9), 7.13 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7,11$); $\delta_{\mathrm{c}}\left(\left[^{2} \mathrm{H}, \mathrm{D}\right.\right.$ D M SO) 150.4 (C), 145.5 (C), 139.9 (C), 132.1 (CH), 131.7 (CH), 129.2 (CH), 128.6 (CH), 124.8 (CH), 122.9 (CH), 122.8 (C), 121.1 (CH) , 119.7 (C) , 115.9 (CH), 115.1 (C), 110.4 (CH), 109.7 (CH) (Found: C, 84.8; H, 4.4; N, 10.2; MH^{+}[CI], 269. Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2}: \mathrm{C}, 85.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 10.45 \% ; \mathrm{MH}, 269$).

3-C hloro-8H -quino[4,3,2-kl]acridine 11b. From 10b, in 50\% yield, $\mathrm{mp} 240-241^{\circ} \mathrm{C}$ (from aqueous DMF); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$

3396, 1625, 1605, 1543, 1466, 1329, 1155, 743; $\delta_{H}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right)$ 10.90 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.54 (d, $1 \mathrm{H}, \mathrm{H}-12$), 8.24 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.92 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-5$), 7.73 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1,6$), 7.46 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,10$), 7.22 (d, 1 H, H-9), 7.13 (m, 2 H, H-7,11); $\delta_{c}\left(\left[\left[^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.\right.$ M SO) 150.5 (C), 140.9 (C), 140.7 (C), 135.9 (C), 134.5 (C), 132.8 (CH), 132.4 (CH), 131.6 (CH), 129.0 (CH), 125.5 (CH), 123.4 (C), 123.3 (CH), 121.8 (CH), 116.7 (CH), 116.0 (C), 111.2 (CH), 110.2 (C), 109.8 (CH) (Found: C, 75.2; H, 3.4; N, 9.2; M ${ }^{+}$[EI], 302, 304. $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 3.6 ; \mathrm{N}, 9.25 \%$; M , 302, 304).

2-Nitro-8H-quino[4,3,2-kl]acridine 11c. From 10c, in 65\% yield, $\mathrm{mp}>300^{\circ} \mathrm{C}$ (from aqueous D M F); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3368$, 1626, 1561, 1463, 1437, 1383, 1343, 742; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO) 11.82 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.24 (m, $2 \mathrm{H}, \mathrm{H}-4,12$), 8.14 (d, 1 H, H-1), 7.88 (dd, $1 \mathrm{H}, \mathrm{H}-3$), 7.74 (m, $2 \mathrm{H}, \mathrm{H}-5,6$), 7.57 (t, $1 \mathrm{H}, \mathrm{H}-10$), 7.20 (m, 3 H, H-7,9,11); $\delta_{c}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 151.7 (C), 151.2 (C), 142.8 (C), 139.8 (CH), 137.0 (C), 133.4 (C), 132.2 (C), 130.2 (C), 128.5 (CH), 127.9 (CH), 124.7 (CH), 123.9 (CH), 121.4 (CH), 118.8 (CH), 118.0 (CH), 117.3 (CH), 115.8 (C), 113.4 (C) (Found: C, 62.4; $\mathrm{H}, 3.7 ; \mathrm{N}, 11.4 ; \mathrm{M}^{+}[\mathrm{EI}]$, 313. $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$. $3 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}, 4.3 ; \mathrm{N}, 11.5 \%$; $\mathrm{M}, 313$).

3-M ethyl-8H -quino[4,3,2-kl]acridine 11d. From 10d in 50\% yield, $\mathrm{mp} 230-232{ }^{\circ} \mathrm{C}$ (from aqueous DM F); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 2989, 1627, 1600, 1536, 1466, 1330, 1154, 743; $\delta_{H}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right)$ 10.83 (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.57 (dd, $1 \mathrm{H}, \mathrm{H}-12$), 8.23 (s, $1 \mathrm{H}, \mathrm{H}-4$) 7.78 (d, 1 H, H-5), 7.73 (m, 2 H, H-1,6), 7.47 (m, 2 H, H-2,10), 7.19 (d, $1 \mathrm{H}, \mathrm{H}-9), 7.14$ (m, $2 \mathrm{H}, \mathrm{H}-7,11$), 2.52 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO) 149.6 (C), 143.8 (C), 140.2 (C), 140.0 (C), 134.3 (C), 133.9 (C), 132.0 (CH), 131.7 (CH), 130.9 (CH), 128.7 (CH), 124.8 (C), 122.7 (C), 122.6 (CH), 121.0 (CH), 120.0 (CH), 116.0 (CH), 115.3(C), 110.4 (CH), 109.6 (CH), $21.4\left(\mathrm{CH}_{3}\right)$ (Found: C, 84.75; H , 4.9; N, 10.1; M ${ }^{+}$[EI], 282. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires C, 85.1; H, 5.0; N, 9.9\%; M , 282).

12-M ethyl-8H -quino[4,3,2-kl]acridine 11e. From 10e, in 60\% yield, mp $185-187^{\circ} \mathrm{C}$ (from aqueous DMF); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3404, 1621, 1600, 1534, 1460, 1384, 1180, 763; $\delta_{H}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right)$ 10.80 (br s, 1H, NH), 8.40 (d, 1H,H-4), 7.89 (d, 1H, H-5), 7.82 (d, H, H-1), 7.64 (m, $2 \mathrm{H}, \mathrm{H}-2,6$), $7.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3$), $7.29(\mathrm{t}, 1 \mathrm{H}$, H-10), 7.08 (m, $2 \mathrm{H}, \mathrm{H}-7,9$), 6.88 (d, $1 \mathrm{H}, \mathrm{H}-11$), 3.12 (s, 3 H , $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO) 157.2 (C), 150.0 (C), 146.7 (C), 144.1 (C), 139.0 (C), 136.2 (CH), 135.2 (CH), 133.5 ($2 \times \mathrm{CH}$), 129.6 (CH), 129.3 (CH), 127.2 (CH), 126.7 (C), 122.8 (C), 120.2 (C), 118.7 (CH), 114.6 (C), $113.6(\mathrm{CH}), 30.9\left(\mathrm{CH}_{3}\right)$ (Found: C, 82.7; $\mathrm{H}, 4.9 ; \mathrm{N}, 9.7 ; \mathrm{M}^{+}[\mathrm{EI}], 282 . \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C 82.5; H , 5.15 ; N, 9.6%; M , 282). A lso isolated by flash chromatography of the crude thermolysis mixture were 8 H -quino-$[4,3,2-\mathrm{kl}]$ acridine $11 \mathrm{a}(12 \%)$, identical (mp ; IR , $\mathrm{UV},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R and mass spectra) and a product ($<1 \%$) tentatively identified as the benzoazepinoacridine $\mathbf{1 2}$ with M^{+}(EI) 282 and 268 $\left(\mathrm{M}+\mathrm{CH}_{2}\right)$.

4H-Benzo[6,7]quino[4,3,2-kl]acridine 11f. Prepared by thermolysis of $\mathbf{1 0 f}$, in 60% yield, $\mathrm{mp} 313-315^{\circ} \mathrm{C}$ (from aqueous DM F); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3449,1626,1597,1535,1468,1385$, 1155, 739; δ_{H} ([${ }^{2} \mathrm{H} 6$] D M SO) 10.95 (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 8.93$ (s, 1 H), 8.51 (dd, 1 H), 8.23 (s, 1 H), 8.08 (d, 1 H), 7.97 (dd, 1 H), 7.91 (dd, 1 H), 7.68 (t, 1 H), 7.39 (m, 3H), 7.16 (d, 2 H), 7.06 (t, 1 H); $\delta_{c}\left(\left[^{2} \mathrm{H}_{6}\right]\right.$ D M SO) 152.0 (C), 140.7 (C), 140.6 (C), 134.5 (C), 134.1 (C), 133.0 (CH), 132.8 (CH), 131.4 (C), 129.0 (C), 125.5 (CH), 128.2 (CH), $127.0(\mathrm{CH}), 125.9(\mathrm{CH}), 125.7$ (CH), 123.6 (C) 122.7 (CH), 122.0 (CH), 117.1 (CH), 114.6 (C), 112.6 (CH) (Found: C, 83.7; H, 4.3; N, 8.5; $\mathrm{M}^{+}[\mathrm{EI}], 318 . \mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{2} \cdot 1 \mathrm{H}_{2} \mathrm{O}$ requires C, 84.1; H , 4.8; $N, 8.5 \%$; $M, 318$).

2-A mino-8H -quino[4,3,2-kl]acridine 11g

A suspension of 2 -nitro-8H-quino[4,3,2-kl]acridine 11c in methanol (100 cm^{3}) was hydrogenated over activated palladium-carbon (0.05 g) for 3 h at 30 psi and $25^{\circ} \mathrm{C}$. Removal of catalyst through Celite, followed by evaporation of solvent gave the aminoquinoacridine $\mathbf{1 1 g}$ (58% yield, red crystals, from aqueous DM F), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3439$,

1630, 1600, 1470, 1384, 1330, 1112, 773; $\left.\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{D} ~ M ~ S O\right) ~ 10.87 ~$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.72 (d, $1 \mathrm{H}, \mathrm{H}-12$), 8.13 (d, $1 \mathrm{H}, \mathrm{H}-4$), 7.67 (d, $1 \mathrm{H}, \mathrm{H}-5$), 7.51 (t, $1 \mathrm{H}, \mathrm{H}-6$), 7.45 (t, $1 \mathrm{H}, \mathrm{H}-10$), 7.20 ($\mathrm{d}, 1 \mathrm{H}$, H-9), 6.97 (m, $4 \mathrm{H}, \mathrm{H}-1,3,7,11$), 5.54 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$); $\delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 150.0 (C), 147.4 (C), 140.1 (C), 134.9 (C), 131.9 (CH), 131.5 (CH), 124.8 (CH), 123.7 (CH), 120.8 (CH), 116.2 (C), 115.9 (CH), 115.1 (CH), 113.4 (C), 109.7 (CH), 109.1 (CH), 107.0 (CH); M ${ }^{+}$(EI) 283.

9-(2-I odoanilino)acridine 16

To a solution of 2-iodoaniline (1.20 g) in refluxing anhydrous methanol ($35 \mathrm{~cm}^{3}$) was added 9 -chloroacridine (1.07 g) over 0.5 h . The mixture was boiled (10 h), cooled and excess diethyl ether added. The precipitated iodoanilinoacridine hydrochloride salt (75\%) was collected (Found: M^{+}[EI], 396. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{I} \mathrm{N}_{2}$ requires $\mathrm{M}, 396$).

The free base, mp $186-188^{\circ} \mathrm{C}$ (from methanol), was obtained from the hydrochloride salt by trituration with aqueous ammonia; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3372,1626,1590,1528,1474,1146$, 1009, 752; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 223, 244, 410; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 11.25 (br s, 1 H, NH), 8.07 (d, 2 H, H-1,8), 7.70 (t, 2 H, H-3,6), $7.52(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{c}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 155.6 (C), 151.6 (C), 141.0 (C), 140.0 (CH), 132.5 (CH), 130.4 (CH), 127.9 (C), 123.7 (CH), 122.0 (CH), 118.7 (CH), 117.6 (CH), 91.2 (C).

The free base (0.4 g) was dissolved in dry toluene ($5 \mathrm{~cm}^{3}$). Tributyltin hydride ($2.5 \mathrm{~cm}^{3}$) was added, the mixture was heated to reflux under nitrogen and a solution of $2,2^{\prime}$-azoisobutyronitrile (0.012 g) in dry toluene ($1 \mathrm{~cm}^{3}$) was added dropwise. The mixture was boiled (12 h) with light exclusion, cooled, diluted with diethyl ether ($20 \mathrm{~cm}^{3}$). The precipitated mixture was separated by flash chromatography (hexanes-ethyl acetate, 1:1) into unreacted iodoanilinoacridine and 8 H -quino[4,3,2-kl]acridine 11a ($0.09 \mathrm{~g}, 32 \%$), identical (mp ; UV, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra) to a sample prepared by thermolysis of 9 -(benzo-triazol-1-yl)acridine 10a (see above).

X-R ay crystal structure determination

Crystal data: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2}, \mathrm{M}_{\mathrm{r}}$ 268.31, monoclinic, space group $\mathrm{P} 2 \mathrm{l} / \mathrm{c}, \mathrm{a}=7.169(1), \mathrm{b}=14.401(3), \mathrm{c}=12.397(3) \AA, \beta=93.92(2)^{\circ}$, $\mathrm{V}=1276.9(4) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{x}}=1.396 \mathrm{~g} \mathrm{~cm}^{-3}$. On an EnrafNonius CAD 4 diffractometer with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$) 4778 reflections were collected, of which 2257 were independent ($\mathrm{R}_{\text {int }}=0.0972$) and 896 were considered observed $[l>2 \sigma(I)]$. The structure was solved by direct methods, ${ }^{24}$ all hydrogen atoms were located in difference electron density maps, and positional parameters of all atoms together with appropriate displacement parameters were refined by the fullmatrix least-squares method. ${ }^{25}$ The final discrepancy indices were $R=0.048$ for observed reflections and $w R\left(F^{2}\right)=0.102$ for all data. The final difference electron density synthesis showed no feature greater than ± 0.18 e $\AA^{-3} . \dagger$

A cknowledgements

This work was supported by a Programme G rant from the Cancer Research Campaign (CRC, UK) to the CRC Experimental Cancer Chemotherapy Research Group at the U niversity of Nottingham and a Studentship (to D. J. H.). E. G.-A. was supported by a E uropean U nion Fellowship Programme.
\dagger A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCD C). See Instructions for Authors, J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCD C for this material should quote the full literature citation and the reference number 207/133.

R eferences

1 A. Albert, The Acridines, Edward Arnold (Publishers) Ltd., L ondon, U K , 2nd edn., 1966.

2 A. A lbert, Selective Toxicity, Chapman and H all, L ondon, 7th edn., 1985, p. 379.
3 A. C. M air and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1972, 161.
4 W. A. Denny, in The Search for New Anticancer Drugs, ed. M. J. Waring and B. A. J. Ponder, K luwer A cademic Publishers, D ordrecht, 1992, pp. 19-54.
5 G. J. Finlay, J.-F. Riou and B. C. Baguley, Eur. J. Cancer, Part A, 1996, 32, 708.
6 B. C. Baguley, A nti-C ancer Drug Des., 1991, 6, 1.
7 W. A. Denny and B. C. Baguley, in M olecular A spects of A nti-cancer Drug-D NA Interaction, ed. S. N eidle and M. J. Waring, M acmillan, L ondon, 1994, pp. 270-311.
8 S. Houlbrook, C. M. Addison, S. L. Davies, J. Carmichael, I. J. Stratford, A . L. H arris and I. D. H ickson, Br. J. C ancer, 1995, 72, 1454.
9 F. H. Drake, G. A. H offmann, H. F. Bartus, M. R. M attern, S. T. Crooke and C. K. M irabelli, B iochemistry, 1989, 28, 8154.

10 M. I. Sandri, D. Hochhauser, P. Ayton, R. C. Camplejohn, R. Whitehouse, H. Turley, K. Gatter, I. D. Hickson and A. L. H arris, Br. J. C ancer, 1996, 73, 1518.
11 L. F. Liu, A nnu. Rev. Biochem., 1989, 58, 351.
12 L. A. M cD onald, G. S. Eldredge, L. R. Barrows and C. M . Ireland, J. M ed. C hem., 1994, 37, 3819.

13 T. F. M olinski, Chem. R ev., 1993, 93, 1825.
14 C. K. Wong, PhD Thesis, A ston U niversity, U K , 1980.
15 G. Mitchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 403.

16 G. M itchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 413.

17 G. A. Reynolds, J. Org. C hem., 1964, 29, 3733.
18 J. L. Ford and P. Timmis, Pharmaceutical Thermal A nalysis, Ellis H orwood, 1988.
19 A. M olina, J. J. Vaquero, J. L. G arcía-N avio and J. A lvarez-Builla, Tetrahedron L ett., 1993, 34, 2673.
20 W. A. Denny, G. J. A twell and B. C. Baguley, J. M ed. C hem., 1983, 26, 1625.
21 M . W. Schmidt, K . K . B aldridge, J. A . B oatz, J. H. Jensen, S. K oseki, M . S. G ordon, K . A . N guyen, T. L. Windus and S. T. Elbert, Q CP E Bulletin, 1990, 10, 52.
22 C. K. Johnson, ORTEP, Report OR NL-5136, Oak Ridge National L aboratory, Tennessee, U SA, 1976.
23 K. G leu and S. N itzsche, J. Prakt. C hem., 1939, 153, 200.
24 P. M ain, G. Germain and M. M . Woolfson, M ULTAN 84, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, U niversities of York, England, and Louvain, Belgium, 1984.
25 G. M. Sheldrick, SHELXL93, Program for the Refinement of C rystal Structures, U niversity of G öttingen, G ermany, 1993.

Paper 7/022991
R eceived 3rd A pril 1997
A ccepted 6th J une 1997

